Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
نویسندگان
چکیده
Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid light-trapping scheme for c-Si thin films, fabricated at wafer scale via a low-cost wet etching process, significantly enhances absorption within the c-Si layer. A broadband enhancement in absorptance that approaches the Yablonovitch limit (Yablonovitch, E. J. Opt. Soc. Am.1987, 72, 899-907 ) is achieved with minimal angle dependence. We also show that c-Si films less than 10 μm in thickness can achieve absorptance values comparable to that of planar c-Si wafers thicker than 300 μm, amounting to an over 30-fold reduction in material usage. Furthermore the surface area increases by a factor of only 1.7, which limits surface recombination losses in comparison with other nanostructured light-trapping schemes. These structures will not only significantly curtail both the material and processing cost of solar cells but also allow the high efficiency required to enable viable c-Si thin-film solar cells in the future.
منابع مشابه
Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.
Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive materia...
متن کاملEfficient light-trapping nanostructures in thin silicon solar cells
We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry is broken. This finding allows us to obtain surface nanostructures with an absorptance exceeding the Lambertian limit over a broad band at normal incidence. Further, we demonst...
متن کاملNanopyramid structure for ultrathin c-Si tandem solar cells.
Recently, ultrathin crystalline silicon solar cells have gained tremendous interest because they are deemed to dramatically reduce material usage. However, the resulting conversion efficiency is still limited by the incomplete light absorption in such ultrathin devices. In this letter, we propose ultrathin a-Si/c-Si tandem solar cells with an efficient light trapping design, where a nanopyramid...
متن کاملToward high-efficiency thin film solar cells combining multi-junctions and nano-scale light management
We have achieved significant accomplishments on the developing of high-efficiency thin film multi-junction solar cell with nano-scale light management. The highlights include: (1) Developed a computational tool for the detailed balance analysis of nanophotonic structures showing that absorption in a solar cell at all angles is sufficient to calculate and understand the fundamental behavior of n...
متن کاملCurrent Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications
Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2012